Vitamin D deficiency in children and adolescents; an international challenge

Zahra Taheri¹, Mahin Ghafari¹, Abdollah Hajivandi², Masoud Amiri*²

Abstract
Low vitamin D level is an important international public health problem. Vitamin D deficiency and its consequences among children and adolescents could indeed be considered as one of the most important public health problems. In fact, low vitamin D levels were reported in both children and adolescents. Several reasons could be taken into account in this regard such as the possibility of the reduced intake or synthesis of vitamin D (due to having a vitamin D deficient mother or a dark skin color), abnormal intestinal function or malabsorption (in small-bowel disorders), or reduced synthesis or increased degradation of vitamin D (in chronic liver or renal disease). More importantly, many countries in developing world, are experiencing a substantial percentage of adolescent and youth population with their own health related problems which vitamin D deficiency could affect on their health. The association between obesity and overweighting and vitamin D deficiency has been reported by many researchers. Diabetes mellitus has also an association with vitamin D deficiency, for both type 1 and type 2 diabetes. Due to the importance of vitamin D deficiency and its negative health consequences, taking the vitamin D supplement seems to be necessary.

Keywords: Vitamin D, Hypovitaminosis D, Children, Adolescents


Vitamin D deficiency in the world
Low vitamin D level is an important international public health problem (1-3). Vitamin D deficiency and its consequences among children and adolescents could indeed be considered as one of the most important problems. In fact, low vitamin D levels were reported in both children (4), especially obese children (5), and adolescents. For example, in a study, 9.9% of Korean adolescents had vitamin D deficiency (6). This deficiency was also common in Kuwait (7), Italy (2,8), Norway (9), Oslo (10), India (3), Japan (11) and the Netherlands (12). In addition, Palacios et al., in a systematic review on world situation of vitamin D deficiency, from April to June 2013, found out that vitamin D deficiency could be considered as an international public health problem, especially in the Middle East area (1). More importantly, many countries in developing world, are experiencing a substantial percentage of adolescent and youth population with their own health related problems which could affect on their health (13).

Several reasons could be taken into account in this regard such as the possibility of the reduced intake or synthesis of vitamin D (due to having a vitamin D deficient mother or a dark skin color), abnormal intestinal function, malabsorption, reduced synthesis or increased degradation of vitamin D (in chronic liver or renal disease) (14). Valtueña et al. investigated vitamin D deficiency among European adolescents and reported that many factors could affect on vitamin D deficiency such as season, latitude, fitness, adiposity, sleep time and vitamin D supplement intake (15). Additionally, Oberg et al. studied on different factors related with vitamin D deficiency in Norwegian Adolescents (9). They found out a significant sex difference, the snuff usage, vitamin D fortified milk intake, using the cod liver oil and vitamin/mineral supplements, physical inactivity, taking a sunbathing holiday and usage of solarium in both school boys and girls. They also detected an inverse correlation between parathyroid hormone levels with vitamin D deficiency among adolescents. Moreover, in Italian healthy adolescents, the prevalence of vitamin D deficiency was about half of participants in the study of

Received: 11 December 2013, Accepted: 27 February 2014, ePublished: 1 March 2014

¹Social Health Determinants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran. ²Department of Epidemiology and Biostatistics, Bushehr University of Medical Sciences, Bushehr, Iran

*Corresponding author: Masoud Amiri, Email: masoud.amiri@yahoo.com
Vierucci and colleagues (8). They showed an increased risk of hypovitaminosis D in winter-spring, overweight-obese, low sun exposure compared to summer-fall period, normal weight and moderate-good sun exposure, respectively. Even in countries with a lot of sunlight, vitamin D deficiency was prevalent in the study of Balasubramanian et al. (3). They suggested that the routine vitamin D supplement intake should start from neonatal period. In another study, the prevalence of vitamin D deficiency was higher among children and adolescents with kidney diseases (16).

Race has also been considered as an important factor related to vitamin D deficiency. For example, in comparison of children of US and Northern Territory, Dyson et al. reported the prevalence of vitamin D deficiency equal to 19% and 3.1%, respectively (17). Furthermore, in a study in Oslo conducted by Aggemoen et al., the prevalence of vitamin D deficiency prevalence among new Asian and African immigrants was estimated (10). They found out that the prevalence depended on the origin country of immigrants; i.e., Middle East (81%), South Sahara Africa (73%), South Asia (75%) and East Asia (24%).

Vitamin D deficiency in obesity
The association between obesity and overweighting and vitamin D deficiency has been reported by many researchers. For instance, in the study of Radhakishun et al., in the Netherlands, vitamin D deficiency was prevalent in treatment-seeking obese ethnic children (12). Likewise, Feng and colleagues studied on the relationship obesity and inflammatory cytokines with vitamin D deficiency in children and found out a negative correlation with body mass index (18). Van Grouw et al., in an overview on childhood obesity reported that vitamin D supplementation may improve the metabolic risk factors among obese children considering higher doses for obese children to treat vitamin D deficiency (19). In addition, Au et al. reported that about 75% of overweight/obese children were at risk of vitamin D deficiency (20). Gutiérrez-Medina et al. reported that vitamin D deficiency was common among obese children compared to normal weight children (21).

Vitamin D deficiency in diabetes mellitus
Diabetes mellitus has also an association with vitamin D deficiency, for both type 1 and type 2 diabetes. The association of vitamin D deficiency and type 1 diabetes mellitus with regards to frequency and severity of disease has been observed in the study of Azab et al. (22). Moreover, Liebeman et al. reported that vitamin D deficiency, in contrast with other studies, was similar among adolescents with and without type 1 diabetes mellitus (23). In a study on Korean girls, Jang et al. also found a relationship between vitamin D deficiency and increasing blood sugar and resistance to insulin (24). However, Poon et al. found out no correlation between vitamin D deficiency and diabetic retinopathy in young people with type 1 diabetes (25). In addition, the association between vitamin D deficiency and type 1 diabetes was approved focusing on the potential increasing of insulin resistance risk (26). Additionally, Gutiérrez-Medina et al. reported that vitamin D deficiency may play a role to develop resistance to insulin and type 2 diabetes mellitus among obese children (21).

Vitamin D deficiency in other diseases
Vitamin D deficiency has relationships with various other diseases. For example, Modan-Moses et al. reported that eating disorders may result in the higher prevalence of vitamin D deficiency among adolescents (27). Alyahya et al. also found a high prevalence of vitamin D deficiency among Kuwaiti adolescent girls which could affect on the mineralization of their bones (7). Non-alcoholic fatty liver disease (NAFLD) is also one important problem among adolescents, in the study of Black and colleagues, which was related with vitamin D deficiency; i.e., about 17% of the patients had both diseases (28). In another study, to assess the relation between vitamin D deficiency and attention deficit hyperactivity disorder (ADHD), Kamal et al., conducted a case-control study and found out that among patients with ADHD, vitamin D deficiency was significantly higher (29). Furthermore, Baek and colleagues reported a positive and significant association between vitamin D deficiency and epilepsy and mental retardation (30). Ceroni et al. reported a significant association between fractures and vitamin D deficiency in children and adolescents in Swiss too (31). Corticosteroids may also increase the risk of decreasing bone mineral density, which could be worsened by vitamin D deficiency; for instance, Esbenshade et al. found a vitamin D deficiency prevalence of 15.8% among cancer survivors (32). Helou et al. confirmed the relation between vitamin D deficiency and cancer among children (33). Chokephaibulkit et al. assessed the prevalence of vitamin D deficiency among HIV-infected Thai adolescents receiving antiretroviral therapy (34). They reported that adolescents with vitamin D deficiency had significantly higher parathyroid hormone levels. In addition, no associations were found between vitamin D deficiency and body mass index, bone mineral density, HIV RNA,
Vitamin D deficiency may have some effects on the lung function and its ability to cope with infection, especially in cystic fibrosis (CF) patients which were approved by the study of McCauley and colleagues (36). Simmons et al. studied on the relationship between vitamin D deficiency and allogeneic hematopoietic transplant and increasing risk of low bone mineral density and suggested that these patients have to intake vitamin D supplements (37). Hossein-nezhad et al., in their review, found out that vitamin D deficiency could affect on musculoskeletal, acute and chronic diseases among children, even in fetal period, and may be involved in some cancers, autoimmune, infectious and neurocognitive diseases, type 2 diabetes and mortality (38).

Vitamin D deficiency has association with children and adolescents who treated with antiepileptic medications due to its effects on bone metabolism and bone mineral density as well as higher fracture risk (30,39). Middleton et al. reported that low bone mineral density and vitamin D deficiency were associated with inflammatory bowel disease considering the difference among races (40). To find out the prevalence of vitamin D deficiency and its potential risk factors among children with osteogenesis imperfecta, Wilsford et al., conducted a research and reported that education programs for patients are necessary (41). Heimbeck et al. investigated the association between vitamin D deficiency and atopic conditions and found an inverse relationship between vitamin D levels and eczema in German children and adolescents (42). Likewise, Reyman et al., assessed the association between vitamin D deficiency and immunomodulatory functions among children 6-16 years and reported a relationship with enhanced systemic inflammation and reduced insulin sensitivity (43).

Significance of vitamin D supplementation
Due to the importance of vitamin D deficiency, taking the vitamin D supplement seems to be necessary. Vitamin D deficiency and its risk factors among Italian children and adolescents were assessed by Vierucci et al. (2). They found that the children and adolescents who were not receiving vitamin D supplementation had higher prevalence of vitamin D deficiency. Suzuki et al., in a study on Japanese girl college students, also reported a high prevalence of vitamin D deficiency which could be decreased by taking vitamin D fortified milk (11). In addition, due to importance of vitamin D in bone and mineral metabolism in children and adolescents and potential effect of vitamin D level of mothers during pregnancy, the need for taking vitamin D supplements, especially for whom spent more time in outdoor activity, has been focused in the study of Shin and colleagues (44). Moreover, Wallace et al. have focused on the enough intake of vitamin D in all stages of life (45). They suggested that using vitamin D supplements should be focused on high risk groups such as low socioeconomic groups, overweight or obese people, especially children and adolescents. France has developed a routine vitamin D enrich program in French infants since 1992 which resulted in low prevalence of vitamin D deficiency among French infants (46). Vitamin D deficiency has also been reported in a country like India with a lot of sunlight in the study of Balasubramanian et al (3). They suggested that the routine vitamin D supplement intake should start from neonatal period.

Conclusion
Low vitamin D level is an important international public health problem. Vitamin D deficiency and its consequences among children and adolescents could indeed be considered as one of the most important health related problems. Due to the importance of vitamin D deficiency, taking the vitamin D supplement seems to be necessary.

Authors’ contributions
All authors contributed to the paper equally.

Conflict of interests
The authors declare that they have no conflict of interests.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support
None.

References
4. Mansbach JM, Ginde AA, Camargo CA Jr. Serum


42. Heimbeck I, Wjst M, Apfelbacher CJ. Low vitamin D serum level is inversely associated with eczema in children and adolescents in Germany. Allergy 2013; 68(7): 906-10.


